Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract This paper presents the first public data release (DR1) of the FRB Line-of-sight Ionization Measurement From Lightcone AAOmega Mapping (FLIMFLAM) survey, a wide field spectroscopic survey targeted on the fields of 10 precisely localized fast radio bursts (FRBs). DR1 encompasses spectroscopic data for 10,468 galaxy redshifts across 10 FRB fields withz < 0.4, covering approximately 26 deg2of the sky in total. FLIMFLAM is composed of several layers, encompassing the “wide” (covering ∼degree or >10 Mpc scales), “narrow” (several arcminutes or ∼Mpc), and integral field unit (“IFU”; ∼arcminute or ∼100 kpc) components. The bulk of the data comprises spectroscopy from the Two Degree Field-AAOmega instrument on the 3.9 m Anglo-Australian Telescope, while most of the narrow and IFU data was achieved using an ensemble of 8–10 m class telescopes. We summarize the information on our selected FRB fields, the criteria for target selection, methodologies employed for data reduction, spectral analysis processes, and an overview of our data products. An evaluation of our data reveals an average spectroscopic completeness of 48.43%, with over 80% of the observed targets having secure redshifts. Additionally, we describe our approach to generating angular masks and calculating the target selection functions, setting the stage for the impending reconstruction of the matter density field.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract The mergers of double neutron star (DNS) systems are believed to drive the majority of shortγ-ray bursts (SGRBs), while also serving as production sites of heavyr-process elements. Despite being key to (i) confirming the nature of the extragalactic SGRBs, (ii) addressing the poorly understoodr-process enrichment in the ultrafaint dwarf galaxies (UFDGs), and (iii) probing the formation process of DNS systems, the space velocity distribution of DNSs is still poorly constrained, due to the small number of DNSs with well-determined astrometry. In this work, we determine new proper motions and parallaxes of two Galactic DNSs, PSR J0509+3801 and PSR J1930−1852, using the Very Long Baseline Array, and we estimate the transverse velocitiesv⊥of all 11 isolated Galactic DNSs having proper-motion measurements in a consistent manner. Our correlation analysis reveals that the DNSv⊥is tentatively correlated with three parameters: spin period, orbital eccentricity, and companion mass. With the preliminaryv⊥distribution, we obtain the following findings. First, the refinedv⊥distribution is confirmed to agree with the observed displacements of the localized SGRBs from their host galaxy birth sites. Second, we estimate that around 11% and 25% of DNSs remain gravitationally bound to UFDGs with escape velocities of 15 and 25 km s−1, respectively. Hence, the retained DNSs might indeed be responsible for ther-process enrichment confirmed so far in a few UFDGs. Finally, we discuss how a future ensemble of astrometrically determined DNSs may probe the multimodality of thev⊥distribution.more » « less
- 
            Abstract FRB 20220610A is a high-redshift fast radio burst (FRB) that has not been observed to repeat. Here, we present rest-frame UV and optical Hubble Space Telescope observations of the field of FRB 20220610A. The imaging reveals seven extended sources, one of which we identify as the most likely host galaxy with a spectroscopic redshift ofz= 1.017. We spectroscopically confirm three additional sources to be at the same redshift and identify the system as a compact galaxy group with possible signs of interaction among group members. We determine the host of FRB 20220610A to be a star-forming galaxy with a stellar mass of ≈109.7M⊙, mass-weighted age of ≈2.6 Gyr, and star formation rate (integrated over the last 100 Myr) of ≈1.7M⊙yr−1. These host properties are commensurate with the star-forming field galaxy population atz∼ 1 and trace their properties analogously to the population of low-zFRB hosts. Based on estimates of the total stellar mass of the galaxy group, we calculate a fiducial contribution to the observed dispersion measure from the intragroup medium of ≈90–182 pc cm−3(rest frame). This leaves a significant excess of pc cm−3(in the observer frame); further observation will be required to determine the origin of this excess. Given the low occurrence rates of galaxies in compact groups, the discovery of an FRB in one demonstrates a rare, novel environment in which FRBs can occur. As such groups may represent ongoing or future mergers that can trigger star formation, this supports a young stellar progenitor relative to star formation.more » « less
- 
            Abstract We present a high-resolution analysis of the host galaxy of fast radio burst (FRB) 190608, an SB(r)c galaxy at z = 0.11778 (hereafter HG 190608), to dissect its local environment and its contributions to the FRB properties. Our Hubble Space Telescope Wide Field Camera 3 ultraviolet and visible light image reveals that the subarcsecond localization of FRB 190608 is coincident with a knot of star formation (Σ SFR = 1.5 × 10 −2 M ⊙ yr −1 kpc −2 ) in the northwest spiral arm of HG 190608. Using H β emission present in our Keck Cosmic Web Imager integral field spectrum of the galaxy with a surface brightness of μ H β = ( 3.36 ± 0.21 ) × 10 − 17 erg s − 1 cm − 2 arcsec − 2 , we infer an extinction-corrected H α surface brightness and compute a dispersion measure (DM) from the interstellar medium of HG 190608 of DM Host,ISM = 94 ± 38 pc cm −3 . The galaxy rotates with a circular velocity v circ = 141 ± 8 km s −1 at an inclination i gas = 37° ± 3°, giving a dynamical mass M halo dyn ≈ 10 11.96 ± 0.08 M ⊙ . This implies a halo contribution to the DM of DM Host,Halo = 55 ± 25 pc cm −3 subject to assumptions on the density profile and fraction of baryons retained. From the galaxy rotation curve, we infer a bar-induced pattern speed of Ω p = 34 ± 6 km s −1 kpc −1 using linear resonance theory. We then calculate the maximum time since star formation for a progenitor using the furthest distance to the arm’s leading edge within the localization, and find t enc = 21 − 6 + 25 Myr. Unlike previous high-resolution studies of FRB environments, we find no evidence of disturbed morphology, emission, or kinematics for FRB 190608.more » « less
- 
            Abstract We present a comprehensive catalog of observations and stellar population properties for 23 highly secure host galaxies of fast radio bursts (FRBs). Our sample comprises 6 repeating FRBs and 17 apparent nonrepeaters. We present 82 new photometric and 8 new spectroscopic observations of these hosts. Using stellar population synthesis modeling and employing nonparametric star formation histories (SFHs), we find that FRB hosts have a median stellar mass of ≈109.9M⊙, mass-weighted age ≈5.1 Gyr, and ongoing star formation rate ≈1.3M⊙yr−1but span wide ranges in all properties. Classifying the hosts by degree of star formation, we find that 87% (20 of 23 hosts) are star-forming, two are transitioning, and one is quiescent. The majority trace the star-forming main sequence of galaxies, but at least three FRBs in our sample originate in less-active environments (two nonrepeaters and one repeater). Across all modeled properties, we find no statistically significant distinction between the hosts of repeaters and nonrepeaters. However, the hosts of repeating FRBs generally extend to lower stellar masses, and the hosts of nonrepeaters arise in more optically luminous galaxies. While four of the galaxies with the clearest and most prolonged rises in their SFHs all host repeating FRBs, demonstrating heightened star formation activity in the last ≲100 Myr, one nonrepeating host shows this SFH as well. Our results support progenitor models with short delay channels (i.e., magnetars formed via core-collapse supernova) for most FRBs, but the presence of some FRBs in less-active environments suggests a fraction form through more delayed channels.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
